
2024/05/28 13:37 1/10 Unofficial Method

MIDIbox - http://www.midibox.org/dokuwiki/

 Elaborate and test on all development platforms!

Unofficial Method

This document is an experiment, not an instruction

Newbies, this is not the page you're searching for.

Using the AutoTools application skeleton

This page describes the use of the autotools-based mios application skeleton.

Announcement forum post: http://www.midibox.org/forum/index.php?topic=10338.0

You can download the skeleton in the annoucement forum post.

Background

Traditional build/install procedure

As of today, quite all applications uses the same standard procedure to be build and installed. That
procedure is composed of the following steps :

Configuration of the build1.
Build itself (Compile/Assemble/Link)2.
Installation of the build artefacts3.

To each of those three steps is associated a standard command. The achieve the build and
installation of a program/library we do :

./configure <configure informations>
make all
make install

Note that the 'all' in 'make all' may be ommited.

However writing the configure script and the Makefile (that consumes the make command) can be
very tedious, moreover if you want them to be portable and easily maintainable… That's when the
Autotools come into action!

http://www.midibox.org/forum/index.php?topic=10338.0

Last update: 2011/07/27 16:44 howto:dev:autotools-skeleton http://www.midibox.org/dokuwiki/doku.php?id=howto:dev:autotools-skeleton

http://www.midibox.org/dokuwiki/ Printed on 2024/05/28 13:37

What are the AutoTools ?

The, so-called, AutoTools are a set of gnu tools to automate the build of gnu-like applications. They
are made as a layer above traditional bash shell and make tool. They use simple configuration files to
generate the scripts and Makefile(s) required to build the application.

AutoTools comprise (amongst others) :

autoconf: Generates a configure script
automake: Generates Makefile files

Why another application skeleton ?

We can note the following facts about the actual C skeleton :

The skeleton comprise lots of files which are generic to the application. Thus, if you make1.
multiple applications, each and every application directory contains copies of those files. This is
really difficult to maintain and very error-prone.
The skeleton uses its own makefile generation system. This…2.

Does not enable directory hierarchies
Does not encompass by default all the currently wanted targets (all, clean, install, dist,
dist-check…)
Is not easily extensible (don't want to have to make rules for simple things and want to
make simple rules for complex things)
Does not take profit of an externally-maintained build system (MidiBox people maintains
it and makes it evolve, which add extra work to the MidiBox community)

Let's detail the exact implications in the try to make it better :

(1) required the MIOS wrapper itself to be put elsewhere than in the skeleton. Why not having a
libcmios library ? Hopefully gplib can make shared libraries and gplink can grasp object files
from them and link them statically inside the application. Cool!
The MIOS-specific linker scripts also had to be put in a shared location. I decided to follow the
usual rules of sharing for cross-compilation… having a directory that is specific for a host
platform that contains headers and libraries. (${prefix}/host/)
The MIOS-specific asm fix script was a problem and should be transparently called.

What is a toolchain ?

A toolchain is the set of tools to go from source files to executable application :

(C source file) ⇒ compile ⇒ (Assembly source file) ⇒ assemble ⇒ (Object file) [⇒ librarian ⇒ (Reusable
library)] ⇒ link ⇒ (Executable application)

Thus a toolchain generally includes :

A compiler (for us sdcc)
An assembler (for us gpasm)
A librarian (for us gplib)

2024/05/28 13:37 3/10 Unofficial Method

MIDIbox - http://www.midibox.org/dokuwiki/

A linker (for us gplink)

To enable integration with the AutoTools, you must have your toolchain to follow the naming style of
the gnu toolchain. That is : tools must be name as the standard gnu tools prefixed by the platform
host (which follows the scheme processor-vendor-os). So :

C compiler is named processor-vendor-os-gcc
Asm compiler is named processor-vendor-os-as
Librarian tool is named processor-vendor-os-ar
Linker is named processor-vendor-os-ld

Also those tools needs to take the standard options of the gnu tools. So we need to have a wrapper
script around sdcc, gpasm, gplib and gplink, that would take care of transparently fixing the asm, and
that would use the GCC command line style.

What are the MIOS platform hosts ?

Host processors are :

pic18f452 (vendor: microchip)
pic18f4520 (vendor: microchip)
pic18f4620 (vendor: microchip)
pic18f4685 (vendor: microchip)

Host OS is (obviously :)) mios

Which makes four possible targets/hosts, which are:

pic18f452-microchip-mios
pic18f4520-microchip-mios
pic18f4620-microchip-mios
pic18f4685-microchip-mios

Support for PIC18F4685 : You need sdcc-svn and gputils-0.13.5 versions at least to get
support for the PIC18F4685 processor (sdcc-svn and >=gputils-0.13.5 packages on
Gentoo Linux)

Settings up the tools

Requirements

You obviously need the AutoTools so…

Please refer to :

Linux : Installing the AutoTools on Gentoo Linux
Mac OSX : Installing the AutoTools on Mac OSX
Cygwin/Windows : Installing the AutoTools on Cygwin/Windows

http://www.midibox.org/dokuwiki/doku.php?id=howto:dev:installing-autotools-linux
http://www.midibox.org/dokuwiki/doku.php?id=howto:dev:installing-autotools-macosx
http://www.midibox.org/dokuwiki/doku.php?id=howto:dev:installing-autotools-cygwin

Last update: 2011/07/27 16:44 howto:dev:autotools-skeleton http://www.midibox.org/dokuwiki/doku.php?id=howto:dev:autotools-skeleton

http://www.midibox.org/dokuwiki/ Printed on 2024/05/28 13:37

Making choices

It is time to choose where you want to install all your MIOS-related things.

Basically, here where the different things will go :

${prefix}/bin will contain the tools from the toolchain
${prefix}/mios/${host} will contain platform-dependent stuff
${prefix}/mios/* will contain platform-independent stuff

where ${prefix} is by default /usr/local.

A more complete view of the filesystem tree is :

${prefix}/
bin/ tools (eg. pic18f4685-microchip-mios-gcc)
mios/

include/ libraries' header files (eg. cmios.h, can.h…)
share/ shared files (eg. documentations, licenses…)
${host}/

lib/ : libraries (eg. libcmios.a, libcan.a…)
scripts/ : linker scripts

You can specify the ${prefix} value by passing –prefix=value to your ./configure command-
line calls. For instance :

./configure ... --prefix=/usr

Note that if you chose to configure a certain prefix for one of your library, you will have to put the
exact same prefix in the configure of all your libraries and applications.

So you have to choose a place in your filesystem and to abide by your choice! (I personally
let the standard /usr/local/ prefix which makes me less to type on the command line.)

In fact, the choice of the ${prefix} for mios-pic16-toolchain is independent from
anything else. But that is the sole one.

Installing mios-pic16-toolchain

 Details…

cd mios-pic16-toolchain
./configure --target=pic18f4685-mios
make
sudo make install

Installing libcmios

2024/05/28 13:37 5/10 Unofficial Method

MIDIbox - http://www.midibox.org/dokuwiki/

 Details…

cd libcmios
./configure --host=pic18f4685-mios
make
sudo make install

Getting started

Here we will describe some of the features of the skeleton, by giving a step-by-step guide to use the
skeleton.

The skeleton, in its delivery form, already contains a simple print “Hello, world!” on the LCD. So, we
will do a little more : fetch an encoder and print its value on the LCD. Let's call our application the
'one-encoder' application.

By doing this we will see how to :

Make the basic configuration of the skeleton
Use an external library (namely libcmios)
Add more C headers and sources
Tweak the data distributed by our package (documentation and license)

So let's start our fabulous application. First copy the skeleton folder and rename its copy one-
encoder

cp -r mios-skeleton-1.9f-r1/ one-encoder
cd one-encoder/

Skeleton overview

Here are the files provided in the skeleton :

config.sub
configure.in
Makefile.am
README
src/

main.c
Makefile.am

Three files are controlling the build and installation behavior :

configure.in - Package configuration tweaking
Makefile.am - Root directory build tweaking
src/Makefile.am - Source directory build tweaking

There is another file in the root directory (config.sub), and there will be more (generated) files
after the first AutoTools launch. However you will never have to modify them. Just understand that

Last update: 2011/07/27 16:44 howto:dev:autotools-skeleton http://www.midibox.org/dokuwiki/doku.php?id=howto:dev:autotools-skeleton

http://www.midibox.org/dokuwiki/ Printed on 2024/05/28 13:37

*.am files are used to generated *.in files, which in turn are used to generate * files. (For instance,
Makefile.am is the source to generate Makefile.in which itself is the source to generate
Makefile.)

You will have to launch the first auto-configuration. This will be done by calling the
auto(re)conf command in a certain way.

After that, each and every time you will modify one of those three files, then, at the time you will
launch the make command again, the package will automatically be reconfigured (in the sense
of calling autoconf).

But, for now, let's copy the skeleton and tweak a bit its configure.in file…

Configuration of the application

Open the configure.in file with your favorite editor. Here is its content :

1 |configure.in

-*- Autoconf -*-
Process this file with autoconf to produce a configure script.
AC_PREREQ(2.61)
AC_INIT(MIOS C Skeleton, 1.9f-r1, http://www.ucapps.de/, mios-c-
skeleton)
AC_MIOS_HOSTS([
 pic18f452-mios pic18f4520-mios pic18f4620-mios pic18f4685-mios
])
AC_MIOS_HOST_PREFIX
AM_INIT_AUTOMAKE([foreign])

Checks for programs.
AM_CHECK_MIOS_TOOLCHAIN

Checks for libraries.
AC_LIB_PREFIX

Checks for header files.
AC_CHECK_HEADERS([pic18fregs.h], [], [
 AC_MSG_FAILURE([Can't compile without PIC header files])])
AC_CHECK_HEADERS([cmios.h], [], [
 AC_MSG_FAILURE([Can't compile without cmios.h])])

Checks for typedefs, structures, and compiler characteristics.
AC_C_CONST
AC_C_VOLATILE

Checks for library functions.

AC_CONFIG_SRCDIR([src/main.c])
AC_CONFIG_HEADERS([src/config.h])

http://www.midibox.org/dokuwiki/doku.php?do=export_code&id=howto:dev:autotools-skeleton&codeblock=5

2024/05/28 13:37 7/10 Unofficial Method

MIDIbox - http://www.midibox.org/dokuwiki/

AC_CONFIG_FILES([
 Makefile
 src/Makefile
])
AC_OUTPUT

Modify line 4 to be as follows :

4 |configure.in

AC_INIT(My One Encoder App., 0.1, http://www.example.com/, one-encoder)

First launch of the AutoTools

Let's tell AutoTools to make the first generation and install the missing files :

autoreconf --install

This will install the compile, missing, install-sh, config.guess and depcomp scripts. You
don't need take any attention to them. There are here for the AutoTools to work correctly.

This will also generate the configure script and Makefile.in.

Modifying src/Makefile.am

Here is the content of src/Makefile.am :

1 |src/Makefile.am

Process this file with automake to produce Makefile.in
bin_PROGRAMS = mios-skeleton
mios_skeleton_SOURCES = main.c # Add C headers and sources here

LDADD = -lcmios

CFLAGS = --disable-warning 85
CFLAGS += --fommit-frame-pointer
CFLAGS += --opt-code-speed
CFLAGS += --optimize-goto
CFLAGS += --optimize-cmp
CFLAGS += --optimize-df
CFLAGS += --obanksel=2

#CFLAGS += --keep-asm

http://www.midibox.org/dokuwiki/doku.php?do=export_code&id=howto:dev:autotools-skeleton&codeblock=6
http://www.midibox.org/dokuwiki/doku.php?do=export_code&id=howto:dev:autotools-skeleton&codeblock=8

Last update: 2011/07/27 16:44 howto:dev:autotools-skeleton http://www.midibox.org/dokuwiki/doku.php?id=howto:dev:autotools-skeleton

http://www.midibox.org/dokuwiki/ Printed on 2024/05/28 13:37

Modify lines 2 and 3 of the file so that it looks like the following :

2 |src/Makefile.am

bin_PROGRAMS = one-encoder
one_encoder_SOURCES = main.c

By doing that we modified the name of the build application.

Building the application

Your application has now all the things needed to be build using the traditional build procedure. So
let's see what are the options of the configure script :

./configure --help=short

This command shows all the options specific to your application. As you can see, there isn't any
specific options (yet!).

So, for now, configure the application in a basic manner :

./configure --host=pic18f4685-mios

You might notice that by running the configure script, the Makefile files have now been
generated.

Now build your application :

make

Check the src/ folder's content. You will find there your one-encoder.hex file ready to be
uploaded to your MidiBox!

Isn't it simple and easy ??

Using external libraries

Specifying a library :

5 |src/Makefile.am

LDADD = -lcmios

Checking for the availability of a header file at configure time :

20 |configure.in

http://www.midibox.org/dokuwiki/doku.php?do=export_code&id=howto:dev:autotools-skeleton&codeblock=9
http://www.midibox.org/dokuwiki/doku.php?do=export_code&id=howto:dev:autotools-skeleton&codeblock=13
http://www.midibox.org/dokuwiki/doku.php?do=export_code&id=howto:dev:autotools-skeleton&codeblock=14

2024/05/28 13:37 9/10 Unofficial Method

MIDIbox - http://www.midibox.org/dokuwiki/

AC_CHECK_HEADERS([cmios.h], [], [
 AC_MSG_FAILURE([Can't compile without cmios.h])])

 Write about :

Availability of HAVE_CMIOS_H in config.h
Adding an –enable-xxx configure flag for an optional dependency (as in libcan for optional
libdebug)

Adding C header and source files

3 |src/Makefile.am

one_encoder_SOURCES = main.c test.h test.c

 Write test.h, test.c and call test.c from main.c

 Write about :

Use of _HEADERS instead of _SOURCES to distribute headers

Distribute data

1 |Makefile.am

Process this file with automake to produce Makefile.in
SUBDIRS = src
dist_doc_DATA = README

 Write about :

Distribute a whole documentation directory like a single file

Skeleton reference

configure.in

Makefile.am

SUBDIRS variable

http://www.midibox.org/dokuwiki/doku.php?do=export_code&id=howto:dev:autotools-skeleton&codeblock=15
http://www.midibox.org/dokuwiki/doku.php?do=export_code&id=howto:dev:autotools-skeleton&codeblock=16

Last update: 2011/07/27 16:44 howto:dev:autotools-skeleton http://www.midibox.org/dokuwiki/doku.php?id=howto:dev:autotools-skeleton

http://www.midibox.org/dokuwiki/ Printed on 2024/05/28 13:37

*_PROGRAMS variables

*_LIBRARIES variables

*_SOURCES variables

*_HEADERS variables

*_DATA variables

LDADD and LDFLAGS variables

CFLAGS variable

Distinctive main.c

Distinctive C tables

MIOS_ENC_TABLE

MIOS_MPROC_TABLE

From:
http://www.midibox.org/dokuwiki/ - MIDIbox

Permanent link:
http://www.midibox.org/dokuwiki/doku.php?id=howto:dev:autotools-skeleton

Last update: 2011/07/27 16:44

http://www.midibox.org/dokuwiki/
http://www.midibox.org/dokuwiki/doku.php?id=howto:dev:autotools-skeleton

	Unofficial Method
	This document is an experiment, not an instruction

	Using the AutoTools application skeleton
	Background
	Traditional build/install procedure
	What are the AutoTools ?
	Why another application skeleton ?
	What is a toolchain ?
	What are the MIOS platform hosts ?

	Settings up the tools
	Requirements
	Making choices
	Installing mios-pic16-toolchain
	Installing libcmios

	Getting started
	Skeleton overview
	Configuration of the application
	First launch of the AutoTools
	Modifying src/Makefile.am
	Building the application
	Using external libraries
	Adding C header and source files
	Distribute data

	Skeleton reference
	configure.in
	Makefile.am
	SUBDIRS variable
	*_PROGRAMS variables
	*_LIBRARIES variables
	*_SOURCES variables
	*_HEADERS variables
	*_DATA variables
	LDADD and LDFLAGS variables
	CFLAGS variable

	Distinctive main.c
	Distinctive C tables
	MIOS_ENC_TABLE
	MIOS_MPROC_TABLE

