
2025/04/30 22:28 1/8 History of the Wavedrum

MIDIbox - http://www.midibox.org/dokuwiki/

The Korg Wavedrum MIDIfied

History

In 1994 Korg released their first Wavedrum, an electronic percussion instrument. Unlike most other
electronic drums this was not just a drum pad used to trigger samples. It was rather a physical
modeling synthesizer, where the actual signals from the pickups were used as stimuli for various
algorithms generating more or less drum-like sounds. Nevertheless, the Wavedrum had a MIDI
interface, so it could be used to trigger external drum modules too. This Wavedrum was very
expensive and only few were made.
In 2009, Korg had stopped making Wavedrums a long time ago, a new Wavedrum came out, the WD-
X. It is more capable of reproducing existing instruments' sounds than the 1994 model, since in
addition to physical modeling also samples are used. Still, the WD-X is way less expensive than its
predecessor. In the following years Korg released several developments, the Wavedrum Mini, the
Wavedrum Oriental, and, most recently, the Wavedrum Global.

To keep the price low, Korg had to cut cost wherever possible. All newer Wavedrums came with a very

limited user interface (no text let alone graphics - only a 3-digit seven segment display!), and
they had no MIDI or other computer interface at all! I felt the urgent need to do something about that.

MIDIfying the Wavedrum

Hardware

Signals from the wavedrum

The WD-X, the Oriental and the Global all (as far as I know) have one piezo pickup for the drumhead,
two piezo pickups (just connected in series) for the rim, and a force sensor in the middle of the
drumhead that can be used for instance to pitch up the drum sound by pressing down the head by
hand. A Wavedrum patch can sound very different, depending not only on how strong the drum head
is hit but also if it is hit at the centre or close to the rim, or if it is hit with a hard or a soft object. My
goal is to transmit this information via MIDI as accurate as possible.

Interfacing the LPCXpresso board

The LPC1769 microprocessor on the LPCXpresso board has an on-chip 12 bit A/D converter. Sampling
both the head and the rim pickup at a rate of 10 kHz each, their waveforms can be captured quite

http://www.midibox.org/dokuwiki/lib/exe/detail.php?id=korg_wavedrum_midification&media=wavedrum_wd-x.jpg

Last update:
2014/02/17
18:59

korg_wavedrum_midification http://www.midibox.org/dokuwiki/doku.php?id=korg_wavedrum_midification&rev=1392663569

http://www.midibox.org/dokuwiki/ Printed on 2025/04/30 22:28

accurately. While it would be possible to get the signals from the piezos directly, I decided to take
them from the outputs of the buffer amplifiers located on the Wavedrum's KLM-2937 board:

Here the signals are centered around 2.5 volts. After a few experiments I found that these signals are
too weak to be fed directly into the LPCXpresso board's ADC inputs, they need some gain.
The output signal of the force sensor is captured too, of course the timing requirements are much less
demanding here. Here the voltage is taken directly from the force sensing resistor, just via a simple
RC low pass filter to suppress noise.
I placed the LPCXpresso board along with a dual opamp and some other components for amplifying
the head and rim piezos on a piece of pad-per-hole board which fits nicely into the Wavedrum. The
opamp circuitry centers the signals properly around 1.65 volts (half the supply voltage), so that they
can be fed into the ADC inputs of the LPCXpresso board. It also does some low pass filtering to
suppress noise. I did not solder the gain setting resistors R1, R2, R3 and R4 directly to the board but
put them in sockets (similar to DIL IC sockets) instead. This way it is easier to find the proper values.

Power supply for the LPCXPresso board

The Wavedrum is powered from an external 9V/1.7A wall wart supply. Since the Wavedrum draws
much less current than 1.7 amps it is possible to power the LPCXpresso board from the wall wart too. I
use a simple linear regulator to get 3.3 volts from the 9 volts. The LPCXpresso board is quite a current
hog, so the LM317 runs rather hot and needs a small heat sink. I placed the regulator on an extra
board, but with a clever layout perhaps it would be possible to fit it onto the board carrying the
LPCXpresso and the preamp too.
The Wavedrum is a quite noisy (electrically) environment. There are several DC/DC converters in
there. The ground connection to the extra circuitry is critical. After a few experiments I found that
noise is suppressed best with a single heavy wire ground connection from the sheet metal that holds
the KLM-2739 board to pin 1 of the LPCXpresso board. The 9 volts are taken from the small board with
the power supply jack and the on/off switch. Maybe there are better options.

http://www.midibox.org/dokuwiki/lib/exe/detail.php?id=korg_wavedrum_midification&media=wavedrum_midi:buffer_amp.jpg
http://www.midibox.org/dokuwiki/lib/exe/detail.php?id=korg_wavedrum_midification&media=wavedrum_midi:internal_electronics.jpg

2025/04/30 22:28 3/8 History of the Wavedrum

MIDIbox - http://www.midibox.org/dokuwiki/

Schematics

User interface

Sorry, no user interface yet. At the moment all user-alterable parameters can be edited via MIDI
Sysex only.

Software

Download the source code here This does not include the FFT stuff yet. I will share it here, but I do

have to tidy it up first.

http://www.midibox.org/dokuwiki/lib/exe/detail.php?id=korg_wavedrum_midification&media=wavedrum_midi:getting_9_volts.jpg
http://www.midibox.org/dokuwiki/lib/exe/detail.php?id=korg_wavedrum_midification&media=wavedrum_midi:wavedrum_midi_schematics.png
http://www.midibox.org/dokuwiki/lib/exe/detail.php?id=korg_wavedrum_midification&media=wavedrum_midi:midi_jack.jpg
http://www.midibox.org/dokuwiki/lib/exe/fetch.php?media=wavedrum_midi:wavedrummidi_1_0.zip

Last update:
2014/02/17
18:59

korg_wavedrum_midification http://www.midibox.org/dokuwiki/doku.php?id=korg_wavedrum_midification&rev=1392663569

http://www.midibox.org/dokuwiki/ Printed on 2025/04/30 22:28

Capturing the head's and the rim's signals

The ADC takes a sample every 50 microseconds. When idle, the head piezo, the rim piezos and the
force sensor are sampled in turns. When a trigger on the head or on the rim is detected, i. e. a
threshold is crossed, the force sensor is temporarily not sampled until 64 samples on the triggered
channel (head or rim) are recorded and the event is processed. During that time the non-triggered
channel (i. e. head if rim is triggered and vice versa) can still be triggered, so “simultaneous” triggers
on head and rim are possible. Because the force sensor is not sampled while the head or rim signal is
recorded, the sample rate here is 10 kHz.

Optionally all 64 samples are output via MIDI Sysex, so the recorded signal can be viewed. Here are a
few examples recorded this way:

(The screenshots are taken from SoundDiver. I'm still using Apple's ancient patch editor . The
waveform display is made from 64 slider objects side by side.)

Crosstalk suppression

On the Wavedrum there is always crosstalk between head and rim. In some situations it may be

http://www.midibox.org/dokuwiki/lib/exe/detail.php?id=korg_wavedrum_midification&media=wavedrum_midi:waveform_head_fingertips.jpg
http://www.midibox.org/dokuwiki/lib/exe/detail.php?id=korg_wavedrum_midification&media=wavedrum_midi:waveform_head_stick.jpg
http://www.midibox.org/dokuwiki/lib/exe/detail.php?id=korg_wavedrum_midification&media=wavedrum_midi:waveform_head_brush.jpg
http://www.midibox.org/dokuwiki/lib/exe/detail.php?id=korg_wavedrum_midification&media=wavedrum_midi:waveform_rim_stick.jpg

2025/04/30 22:28 5/8 History of the Wavedrum

MIDIbox - http://www.midibox.org/dokuwiki/

desirable that only one MIDI message is generated when a trigger is detected on both pickups at the
same time. When recording the head or rim signal is completed while on the other channel there's
also some recording going on, the program waits until that recording is finished too and then outputs
only one MIDI message for the stronger of the two signals.

Processing the signals

After 64 samples of the head or rim signal have been captured, a FFT (Fast Fourier Transform) on
these samples is performed. This results in 33 (usable) frequency bins representing the spectrum of
the signal. I did not program the FFT myself but took it from NXP's AN10913. This ZIP archive contains
several files, the library which has to be linked to the MIDIBOX project is
CodeRed/cr_dsplibFFTbin_cm3/libcr_dsplibFFT_cm3.a. To link this library to the project, the line

 LIBS = libcr_dsplibFFT_cm3.a

is added to the makefile. A short yet comprehensible introduction into the concept of the FFT
including examples on how to use NXP's DSP library is given in AN10943. I think it's amazing that the
humble LPC1769 can calculate a 64-points-FFT so quickly that the delay is not noticable (at least to
me). There are countless ways how the result of a FFT can be used. For the head signal, the high
frequency components are stronger when the head is hit with a harder object (drumstick rather than
hand), and when it's hit closer to the rim. This way a crude position detection is possible.
Only the absolute values of the complex frequency bin values are used. The correct formula would be

abs = √((real part)² + (imaginary part)²)

but I skip the square root to save execution time. So the squares of the absolute values are used
rather than the absolute values themselves.
At the moment, I extract three parameters out of the FFT result: amplitude, center frequency and
variance. Amplitude (better: energy) is the sum of the absolute values (or rather their squares, see
above). Center frequency is sort of a “center of gravity” of the frequencies. It is calculated by
summing up the products of the absolute values (their squares, that is) and the frequencies for the 33
bins and then dividing this sum by the amplitude calculated in the first step. Variance, finally, is a
measure that shows whether the energy is focussed in a narrow frequency band or wide spread
across many frequencies. Unlike as for center frequency, here the squares of the products of the
absolute values and the frequencies are summed up. Then this sum is divided by the amplitude
calculated in the first step. Finally the square of the center frequency calculated in the second step is
subtracted.

Auto-zero

There are two trimpots to adjust the zero levels for the head and the rim signal (see schematics
above). However, to determine the zero levels more precisely the levels at the three ADC inputs are
measured on startup (after waiting for a few seconds, to allow for things to warm up). The zero levels
of the head and the rim signals are also adjusted dynamically while waiting for trigger events.

Processing the force sensor

http://www.nxp.com/documents/application_note/AN10913_CM3_DSP_library_v1_0_0.zip
http://www.nxp.com/documents/application_note/AN10943.zip

Last update:
2014/02/17
18:59

korg_wavedrum_midification http://www.midibox.org/dokuwiki/doku.php?id=korg_wavedrum_midification&rev=1392663569

http://www.midibox.org/dokuwiki/ Printed on 2025/04/30 22:28

When the voltage at the force sensor changes, a MIDI Control Change, Aftertouch or Pitch Bend
message can be generated. It's thinkable that the note number of drum trigger events is varied
depending on pressure, but this is not implemented yet.

MIDI

When hit at the head or at the rim, a Note On message is sent. The note number can be influenced by
the center frequency of the FFT output (higher frequencies give higher note numbers). The velocity
can be taken from the amplitude of the FFT output. Alternatively, the absolute maximum of the signal
can be used. The MIDI channel can be set individually for the head and for the rim. If there's a
pending note with that number and channel, a Note Off message is sent first. In addition to the Note
On message a CC# message representing the variance is sent. As mentioned above, the force sensor
is able to generate Control Change, Aftertouch or Pitch Bend messages.
Various user-settable parameters can be transmitted to the software via MIDI Sysex messages. The
bulk dump format is as follows:

$F0 $7D $57 $44 $4D $49 $20 $02 $00 $00 $0h $0l….$0h $0l $F7

The $0h $0l….$0h $0l part designates a block of 512 MIDI bytes. These represent 256 parameter
bytes 1) which are listed in the table below (numbered from 0 to 255). Some parameters are 16-bit, in
these cases the LSByte is sent first.
When the software receives such a message, the parameters are updated. The internal settings can
be requested with a dump request:

$F0 $7D $57 $44 $4D $49 $20 $01 $00 $00 $F7

The software will respond with a bulk dump as described above.

number (decimal) meaning range (decimal)
00..15 patch name ASCII chars
16 MIDI channel for rim 0..15
17 MIDI channel for head 0..15
18 MIDI channel for force sensor 0..15
19 MIDI note number for rim 0..127
20 MIDI note number for head 0..127
21 MIDI controller for force sensor 0..1272)

22 trigger threshold for head and rim 0..255
23 above threshold max, for glitch suppress 0..63
24 rim velocity scale 0..127
25 head velocity scale 0..127
26 below threshold max, for glitch suppress 0..63
27 if 1, Sysex bulk dump is sent after each trigger 0, 1
28, 29 debounce time 0..4095

There are some read-only parameters. These should not be altered. They are useful during software
development. If parameter #27 is set to 1, a bulk dump is sent after each trigger. This way the
waveform can be viewed immediately. To avoid excessive MIDI data traffic, during normal playing
parameter #27 should be set to zero.

2025/04/30 22:28 7/8 History of the Wavedrum

MIDIbox - http://www.midibox.org/dokuwiki/

number (decimal) meaning range (decimal)
181, 182 zero pressure 0..4095
183, 184 detected minimum 0..4095
185, 186 detected maximum 0..4095
187, 188 zero rim 0..4095
189, 190 zero head 0..4095
191 ADC from which the waveform was recorded; 0=Rim, 1=Head 0, 1
192..255 waveform buffer 0..2553)

Future plans

Replacing the force sensor

It's sometimes mentioned that the rebound of the Wavedrum is not great (playing with sticks,
rebound helps when playing snare rolls etc). Some say this is because the force sensor pushes
against the bottom side of the drum head. I think it should be possible to replace the mechanical
sensor with a reflective optical sensor like the CNY70. This would not be in touch with the drum head
at all, hence no impact on rebound. The sensitivity of the head pickup might be improved too.
Regarding the Wavedrum's internal sounds, it might become tricky to get the same response as with
the old sensor, but for the MIDI extension any desired response can be realized in software.

Separating the two rim sensors

As mentioned, there are two sensors attached to the rim, but these are just wired in series.
Interpreting the two sensors' signals seperately, probably the position where the rim was hit could be
detected. Of course the sum of the two signals still needs to be available for the Wavedrum's original
electronics.

User interface

At least a text display and a few buttons. Unfortunately there isn't much room for this in the
Wavedrum.

Improving the Wavedrum's own user interface

At the moment everything is coded into three digits or letters (letters that can reasonably be
displayed in a seven-segment digit, that is). It's impossible to edit the Wavedrum's patches without
looking at the user's manual all the time. With a text display the Wavedrum's user interface would
vastly be improved. Software had to monitor the Wavedrum's own six pushbuttons and its rotary
encoder to keep track which parameter is edited.

Yes, I'm aware that this is a huge programming task.

Last update:
2014/02/17
18:59

korg_wavedrum_midification http://www.midibox.org/dokuwiki/doku.php?id=korg_wavedrum_midification&rev=1392663569

http://www.midibox.org/dokuwiki/ Printed on 2025/04/30 22:28

Position sensing

Unlike the Roland HPD, the Wavedrum cannot sense where the drum head is hit. There are application
notes from NXP on capacitive touch sensing with the LPC processors (AN11023, AN11095). I have no
idea if this is feasible, but maybe regions of the drumhead can be covered with some conductive paint
(from the bottom side perhaps), and, with hand playing, the region that was hit can be detected.

1)

as in SYSEX_FORMAT 1 in tutorial 025
2)

0..120: CC#; 121: Aftertouch; 122: Pitch Bend Up; 123: Pitch Bend Down; 127: Off
3)

scaled down from 0..4095

From:
http://www.midibox.org/dokuwiki/ - MIDIbox

Permanent link:
http://www.midibox.org/dokuwiki/doku.php?id=korg_wavedrum_midification&rev=1392663569

Last update: 2014/02/17 18:59

http://www.midibox.org/dokuwiki/
http://www.midibox.org/dokuwiki/doku.php?id=korg_wavedrum_midification&rev=1392663569

	[History]
	[History]
	History
	MIDIfying the Wavedrum
	Hardware
	Signals from the wavedrum
	Interfacing the LPCXpresso board
	Power supply for the LPCXPresso board
	Schematics
	User interface

	Software
	Capturing the head's and the rim's signals
	Crosstalk suppression
	Processing the signals
	Auto-zero
	Processing the force sensor
	MIDI

	Future plans
	Replacing the force sensor
	Separating the two rim sensors
	User interface
	Improving the Wavedrum's own user interface
	Position sensing

