2026/01/09 14:33 1/7 M16 MIDI Interface

M16 MIDI Interface

Add 16 MIDI I/O to your Core, SPI Slave Interface with up to 16 UARTs(MIDI 1/0), based on
low-cost FPGA...

Features

The FPGA internal clock works @88.67MHz.

Fast 4 wires SPI in slave mode to control the board, 10Mb/s, 5V tolerant.

Uses the default MIOS32_SPI_MIDI protocol, MIOS32 is ready-to-use with it.

16 UARTSs on board, it's 16 MIDI ports.

Each MIDI output has its own FIFO buffer of 1024 bytes, to queue the incoming MIDI from the

SPI.

e Each MIDI output has its independent “Running Status”, with Disable/Enable Command from
SPI.

e There's a 64 word(32bits) FIFO for out-coming messages from the board.

* 3 independents groups of 16 GPIOs, configurable and settable by SPI Command.

e Can be stacked under a dipBoardF4

MIDIbox - http://www.midibox.org/dokuwiki/

http://www.midibox.org/dokuwiki/doku.php?id=dipboardf4

Last update: 2018/09/30 07:39 m16 http://www.midibox.org/dokuwiki/doku.php?id=m16&rev=1538293155

PCB

2 layers PCB design.
0CO0O0O0O0O Fits 2 layer mostly common design
O00000O rules.

[T - 1

e min. drill 10mil
e min. width 6mil

O
O
O
O
O
O
O
O
O
O

)2018 Solderin

m16 interfaCé

SPIto 16 MIDI UART/48 GPIO

GND TCK TD®@

Mo O QO mo3
mo2 Q- Mo1

Mis Q-0 mi3
mow O QO mMo3
M, Q—-Q mi3

s O 3vs
o) Q3v3
v Q3v3

211

3v3Q Oono

20 01

+0O O3 C’%Q beta
40 O 4 m16 interface

SPI to 16 MIDI UART/48 GPIO
80 0O

3viQ QOano
100 O
120 Q.11
1.0 Qa3
16Q Qs

\
X
O{;v)

midibox.org

@
>

JIB OlOane

=
n
=
o
=
=
@
o
=3
(%]
e
i
>
™~
N

o
O

s

u

SJ.VL
3v3sQ Qoo
3v3Q Qoo
Mo O Qmo3

mo2 O—Q mo1
mi O—-Qmi3

Mz O—-Q M

Mis Q- mi3
s QO3vs

oo Q3sv3

wf
o

Dimension

http://www.midibox.org/dokuwiki/ Printed on 2026/01/09 14:33

2026/01/09 14:33 3/7 M16 MIDI Interface

| 74.28

65.04

m16 interface

‘ 0] te L& MIDI LART &8 GRID

SPI Communication and protocol

This protocol is already implemented in MIOS32 as MIOS32_SPI_MIDI functions.

This is a SPI slave interface.

Host communication protocol is based on MMA Specification for USB communication.

MIDI data is carried in the packet in 32 bit MIDI Event. Most common MIDI messages are 2 or 3 bytes
packed into one MIDI Event.

Longer messages, generally System Exclusive messages are carried in multiple MIDI Events. These
MIDI Event provide a method to transfer MIDI messages with 32 bit fixed length messages to help
memory allocation. This also makes parsing MIDI events easier by packetizing the separate bytes of a
MIDI message into one parsed MIDI Event.

The first byte in each 32-bit MIDI Event is a sub-header containing a Port Index Number (4 bits)
followed by a Code Index Number (4 bits). The remaining three bytes contain the actual MIDI event.
Most typical parsed MIDI events are two or three bytes in length. Unused bytes are reserved and must
be padded with zeros (in the case of a one- or two-byte MIDI event) to preserve the 32-bit fixed length
of the MIDI Event.

The Code Index Number (CIN) indicates the classification of the bytes in the and the number of bytes
in the message. The following table summarizes these classifications.

MIDIbox - http://www.midibox.org/dokuwiki/

http://www.midibox.org/dokuwiki/lib/exe/detail.php?id=m16&media=antichambre:m16_interface_v1b.beta_dim.png

Last update: 2018/09/30 07:39 m16 http://www.midibox.org/dokuwiki/doku.php?id=m16&rev=1538293155

//! this global array is read from MI0S32 MIDI to
//! determine the number of MIDI bytes which are part of a package
const u8 mios32 midi pcktype num bytes|16

0, // 0: invalid/reserved event

0, // 1: local command

2, // 2: two-byte system common messages like MTC, Song Select, etc.
3, // 3: three-byte system common messages like SPP, etc.

3, // 4: SyskEx starts or continues

1, // 5: Single-byte system common message or sysex sends with following
single byte

2, // 6: SyskEx sends with following two bytes

3, // 7: SysEx sends with following three bytes

3, // 8: Note Off

3, // 9: Note On

3, // a: Poly-Key Press

3, // b: Control Change

2, // c: Program Change

2, // d: Channel Pressure

3, // e: PitchBend Change

1 // f: single byte

MIDI messages

Running status is never used, so all the messages are formed of all bytes. But the interface supports
it, each MIDI Out can be individually set for that purpose.

Some examples

MIDI clock on port 7(SPIMO to SPIM15)
MIDI message is 0xF8, cin = 0x5.
SPI message = 0x0000f875 (Less significant byte first)

mios32 midi package t package

package.ALL = 0

package.cin = 0x5; // Single-byte system common message
package.evnt® = Oxf8; // MIDI Clock event status
MIOS32 MIDI SendPackage(SPIM7, package

// or directly

MIOS32 MIDI SendClock(SPIM7

Note On on port 11
MIDI message is 0x90 0x2A 0x40, cin = 0x9.
SPI message = 0x402A90b9

http://www.midibox.org/dokuwiki/ Printed on 2026/01/09 14:33

2026/01/09 14:33 5/7 M16 MIDI Interface

mios32 midi package t package

package.ALL

package.cin 0x9; // Single-byte system common message
package.evnt® = 0x90; // MIDI Note On event, channel 1
package.evntl = Ox2A; // Note Number

package.evnt2 = 0x40; // Velocity
MIOS32 MIDI SendPackage(SPIM11l, package

// or directly

MIO0S32 MIDI SendNoteOn(SPIM11l, Chnl, Ox2A, 0x40

System Exclusive on port 0
MIDI message is 0xFO 0x01 0x02 0x03 0x04 0x05 OxF7.
The stream will be divided in 3 packages:

SPI messages = 0x0101f004(SYSEX start), 0x05040304(SYSEX continues), 0x0000f705(SYSEX ends

with one byte)

mios32 midi package t package

package.ALL

package.cin = 0x4; // Single-byte system common message
package.evnt@ = 0xf0; // Start of Exclusive
package.evntl = 0x01; // Data

package.evnt2 = 0x02; // Data

MIOS32 MIDI SendPackage(SPIMO, package

package.evnt® = 0x03; // Data

package.evntl = 0x04; // Data

package.evnt2 = 0x05; // Data

MIOS32 MIDI SendPackage(SPIMO, package

package.ALL

package.cin 0x4; // Single-byte system common message
package.evnt® = Oxf7; // End of Exclusive
MIO0S32 MIDI SendPackage(SPIMO, package

// or directly

u8 stream OxFO, 0x01, 0x02, 0x03, 0x04, Ox05, OxF7
MIOS32 MIDI SendSysex(SPIMO, (u8*)stream

Special command messages

The m16 can receive some specifics commands and send back some status messages.
when CIN=0x1(local command), the m16 will parse the message as a command and apply the
requested change.

¢ Port(Cable)value becomes Group Command Code(GCC).
e evnt0 is the command number(CMD.
e evntl and evnt2 are the value bytes.

List of the commands:

MIDIbox - http://www.midibox.org/dokuwiki/

Last update: 2018/09/30 07:39

m16 http://www.midibox.org/dokuwiki/doku.php?id=m16&rev=1538293155

byte(0) byte(1) byte(2) byte(3)
. . Command Status
GCC(bit7-4) CIN(bit 3-0) |evntO(CMD)| evntl evnt2
0x01 OxXXXK UART fifo source. 0x0000: SPI is the source else UART(loopback)
0x02 OxXXXK SPI fifo source. 0x0000: UART is the source else SPI{loopback)
0x0{system |always 0x1 (local — — —
fig) command) 0Xx03 OxXXXK SPI miso send MIDI In Activity status. 0x0000: Off else On OxXXXX are the 16 status bits{sent on change every poll)
con
& 0X04 (e el 5P1 miso send MIDI Out Activity status. 0x0000: Off else On 0xXXXX are the 16 status bits{sent on change every poll)
0X05 D0 SPI miso send MIDI Out Overload status. 0x0000: Off else On 0x¥XXX are the 16 status bits{sent on change every poll)
0x1{MIDI | always 0x1 (local MIDI Running Status Enabler(1 bit by MIDI Qut port),
X 0x01 O5OCXK 3
config) command) default is 0xffff{all enabled)
GPIOA Mode{default is 0x00).
— 0%00: group is MIDI In Activity
— Ox01L: group is MIDI Out Activity
0x01 OO0 . .
-- 0x02: group is MIDI Out Overload when in moqe—OxM{GPI]
oxa(GPIOA | always 0x1 (local - 0x03: group is 16 General Purpose Outputs DxXXXX are the 16 GPI value bits{sent on change every poll}
) . and inverted depending on Inverter buffer.
params) command) -- 0x04: group is16 General Purpose Inputs
Inverter buffer(1 bit for each pin). If 1 value is inverted.
0x02 O5OCXK X .
Defaut is 0xffff{all inverted)
buffer for the 16 General Purpose OQutputs when
0x03 O XXX
Mode=0x03(GPQ)
GPIOB Mode(default is 0x01).
— 0%00: group is MIDI In Activity
— Ox01L: group is MIDI Out Activity
0x01 OO0 . .
-- 0x02: group is MIDI Qut Overload h when ": mobqe—OxM{GPI]h I
OXb{GPIOB. | always 0x1 {local — 0x03: group Is 16 General Purpose Outputs OxXXXX are the 16 GPI value bits{sent on change every poll)
) . I and inverted depending on Inverter buffer.
params) command) - 0x04: group is16 General Purpose Inputs
Inverter buffer({1 bit for each pin). If 1 value is inverted.
0x02 O . B
Defaut is 0xffff(all inverted)
buffer for the 16 General Purpose OQutputs when
0x03 O XXX
Mode=0x03(GPQ)
GPIOC Mode(default is 0x02).
-- 0x00: group is MIDI In Activity
-- 0x01: group is MIDI Out Activity
0x01 OXXKXX i .
-- 0x02: group is MIDI Qut Overload h when ": mu;e—OxM{GPI]h I
Oxc(GPIOC | always 0x1 {local — 0x03: group is 16 General Purpose Outputs 0xXXXX are the 16 GPI value bits{sent on change every poll}
) . I and inverted depending on Inverter buffer.
params) command) — 0x04: group is16 General Purpose Inputs
Inverter buffer({1 bit for each pin). If 1 value is inverted.
0x02 O . B
Defaut is 0xffff(all inverted)
buffer for the 16 General Purpose OQutputs when
0x03 OsOO0K
Mode=0x03(GPO)

With System commands, you will be able to

e Put SPI or UARTS in loopback for testing purpose.
e Enable MIDI activity status messages over SPI(MISO).

There's only one MIDI configuration command, dedicated to UARTs TX(MIDI Out) Running Status

enabler.

With GPIOx commands, you can configure and set the GPIO ports.

toDo

Some connection examples\\

In MIOS32

datasheet

http://www.midibox.org/dokuwiki/

Printed on 2026/01/09 14:33

http://www.midibox.org/dokuwiki/lib/exe/detail.php?id=m16&media=antichambre:cmd_table.png

2026/01/09 14:33 717 M16 MIDI Interface

From:
http://www.midibox.org/dokuwiki/ - MIDIbox

Permanent link:
http://www.midibox.org/dokuwiki/doku.php?id=m16&rev=1538293155

Last update: 2018/09/30 07:39

MIDIbox - http://www.midibox.org/dokuwiki/

http://www.midibox.org/dokuwiki/
http://www.midibox.org/dokuwiki/doku.php?id=m16&rev=1538293155

	M16 MIDI Interface
	Features
	PCB
	Dimension
	SPI Communication and protocol
	MIDI messages
	Some examples

	Special command messages

