
2024/05/05 17:42 1/3 Arithmetic Calculations

MIDIbox - http://www.midibox.org/dokuwiki/

C Variables

Declaring a variable as type 'const' will cause the compiler to store the variable in the PIC's
program flash memory, not the SRAM.

Adding the keyword 'volatile' to a variable is a good idea when this variable can be changed or
altered outside the sourcefile that declared this variable.

C Functions

MIOS_*_SRSet and _SRGet Functions refer to the pins in Little-Endian order, so for example:

MIOS_DOUT_SRSet(1, 00000001) Will set the 1st pin (aka Pin 0)…. or
MIOS_DOUT_SRSet(1, 01000000) Will set the 7th pin (aka Pin 6)

C Optimizations

How to mix C and ASM

SDCC Bugs/Workarounds

Some of these bugs have first been described in a german thread in the forum.

Array Access

Sometimes the transfer of an array between modules does not work properly, e.g. file 1:

unsigned char MIDIValues[8];

file 2:

MIOS_MIDI_TxBufferPut(MIDIValues[1]);

http://en.wikipedia.org/wiki/Variable
http://en.wikipedia.org/wiki/Compiler
http://en.wikipedia.org/wiki/Flash_memory
http://en.wikipedia.org/wiki/Static_random_access_memory
http://en.wikipedia.org/wiki/Volatile_variable
http://en.wikipedia.org/wiki/Variable
http://en.wikipedia.org/wiki/Endianness
http://www.midibox.org/dokuwiki/doku.php?id=how_to_mix_c_and_asm
http://www.midibox.org/forum/index.php?topic=7463.msg50464#msg50464

Last
update:
2006/10/15
10:35

c_tips_and_tricks_for_pic_programming http://www.midibox.org/dokuwiki/doku.php?id=c_tips_and_tricks_for_pic_programming&rev=1160429585

http://www.midibox.org/dokuwiki/ Printed on 2024/05/05 17:42

Instead, you need to do something like

unsigend char value = MIDIValues[1]; //explicite temp variable
MIOS_MIDI_TxBufferPut(value);

Large Arrays

Arrays with more than 256 elements will produce compile (in fact linker) errors:

unsigned char myArray[256]; // will work
unsigned char myArray[257]; // will not be linked!

unsigned char myArray[64][4]; // will work
unsigned char myArray[64][5]; // will not be linked!

Thanks to Thomas for testing some workarounds with multiple single-dimensional arrays.

Parenthesis

Always use parenthesis around expressions like

myarray[a+b];

instead use

myarray[(a+b)];

Preprocessor #ifs

Avoid #ifdef and #if preprocessor-statements wrapped around declarations and function prototypes.
Even if the preprocessor's #if statement is true (eg defined as '1'), any access to it's vars and
functions from outside these wrapped statements produce a compile-warning:

#define TEST 1

#if TEST
 unsigned char testvar;
#endif /* TEST */

http://www.midibox.org/forum/index.php?topic=6814.msg43501#msg43501

2024/05/05 17:42 3/3 Arithmetic Calculations

MIDIbox - http://www.midibox.org/dokuwiki/

void testfunction(void) {
 unsigned char c = testvar + 1; // access to testvar produces compiler
error!
}

Zero Compare

Avoid comparisons of unsigned char with , e.g.

unsigned char i;
 for (i = ; i < ; i+ü) {
 //body
 }

0 could be a constant that was defined using #define, e.g. the number of motorized faders. But you
have no motorized faders… The main problem consists in the fact that your code depends on what
else is done around the comparison or in the body. This provokes completely erratic behaviour.

From:
http://www.midibox.org/dokuwiki/ - MIDIbox

Permanent link:
http://www.midibox.org/dokuwiki/doku.php?id=c_tips_and_tricks_for_pic_programming&rev=1160429585

Last update: 2006/10/15 10:35

http://www.midibox.org/dokuwiki/
http://www.midibox.org/dokuwiki/doku.php?id=c_tips_and_tricks_for_pic_programming&rev=1160429585

	C Variables
	C Functions
	C Optimizations
	SDCC Bugs/Workarounds
	Array Access
	Large Arrays
	Parenthesis
	Preprocessor #ifs
	Zero Compare

