
2024/09/21 12:41 1/6 Arithmetic Calculations

MIDIbox - http://www.midibox.org/dokuwiki/

Arithmetic Calculations

Avoid using multiplications and divisions whenever possible. These complex mathmatic
calculations need a lot processing power and (what's even worser) a huge library to be
compiled at all.
If you need to multiply with and divide through even numbers like 2, 4, 8, 16, 32 … you can
make use of the bitshifting operators “»” and “«”

unsigned char c;
c = 12 >> 1; // c is 6 (division through 2)
c = 12 >> 2; // c is 3 (division through 4)
c = 12 << 1; // c is 24 (multiplication by 2)
c = 12 << 2; // c is 48 (mulitplication by 4)
c = 1023 >> 3; // c is 127 (10bit to 7bit ;)

There's an excellent thread in the forum that discusses bitoperations:
http://www.midibox.org/forum/index.php?topic=6981.0
The Re: Scan Matrix extended : VOIRINOV thread has an explanation of what the declaration of
the bitfield is all about.
If this is not enough, you could search for ASM optimized custom functions. You'll find some in
code examples of TK, the ACSensorizer and a lot of PIC-Specialized Webpages – or of course the
forum.

MIOS LIBSDCC Library

If that still is not enough or you have no time and a lot of processing power / space available on your
PIC, you can include the libsdcc library:
If multiplications, divisions, pointer operations, etc. are used in the .c code, the linker may fail due to
missing functions, which are part of the libsdcc.lib library. The common library for pic16 derivatives is
not compatible to MIOS, therefore I've created a special one which can be downloaded from here.
Read the README.txt file for further details. TK on the C-Page You Should specify your custom linker
script in the makefile if using the new gpasm based mios toolchain.
When using the library, sometimes the compiler will optimise multiplications to bitshifts (as
demonstrated above) automatically. You can check the output files to see if this has occurred, but it is
recommended to code the bitshifts manually, to be sure.
====== Bitfields, Unions & Structs ====== * Avoid using huge int- or char-arrays when you just
need to store some ON/OFF values. Use a bitfield instead <code c> define the bitfield typedef union {

struct {
 unsigned ALL:8; // by calling something.ALL, you get the whole
bitfield as 8-bit number
};
struct {
 unsigned led1:1; // by calling something.led1 you get one bit-state (1
or 0)
 unsigned led2:1;

http://www.midibox.org/forum/index.php?topic=6981.0
http://www.midibox.org/forum/index.php/topic,9666.msg73781.html#msg73781
http://www.midibox.org/dokuwiki/doku.php?id=acsensorizer
http://www.ucapps.de/mios/mios_libsdcc_v2_5_0.zip
http://www.ucapps.de/mios_c.html

Last
update:
2008/05/02
16:40

c_tips_and_tricks_for_pic_programming http://www.midibox.org/dokuwiki/doku.php?id=c_tips_and_tricks_for_pic_programming&rev=1207429405

http://www.midibox.org/dokuwiki/ Printed on 2024/09/21 12:41

 unsigned led3:1;
 unsigned led4:1;
 unsigned free:4;
};

} something_t;

declare var something_t something; set bits something.led1 = 1; something.led3 = 0;

get number mynum = something.ALL; </code> » It has been confirmed with recent versions of SDCC,
that bitfields are not limited to 8bits as was previously expected.

C Functions

MIOS_*_SRSet and _SRGet Functions refer to the pins in Little-Endian order, so for example:

MIOS_DOUT_SRSet(1, 00000001) Will set the 1st pin (aka Pin 0)…. or
MIOS_DOUT_SRSet(1, 01000000) Will set the 7th pin (aka Pin 6)

C Optimizations

How to mix C and ASM
Compiled C Code Size

C Variables

Declaring a variable as type 'const' will cause the compiler to store the variable in the PIC's
program flash memory, not the SRAM.

Adding the keyword 'volatile' to a variable is a good idea when this variable can be changed or
altered outside the sourcefile that declared this variable.

Always use 'unsigned' if you are sure you don't need negative values. Although the default is an
unsigned char, it's not always clear how C treats a 'char' (signed: -128 to 127; unsigned: 0 to
255), so it's better to be clear here.

http://en.wikipedia.org/wiki/Endianness
http://www.midibox.org/dokuwiki/doku.php?id=how_to_mix_c_and_asm
http://www.midibox.org/dokuwiki/doku.php?id=compiled_c_code_size
http://en.wikipedia.org/wiki/Variable
http://en.wikipedia.org/wiki/Compiler
http://en.wikipedia.org/wiki/Flash_memory
http://en.wikipedia.org/wiki/Static_random_access_memory
http://en.wikipedia.org/wiki/Volatile_variable
http://en.wikipedia.org/wiki/Variable

2024/09/21 12:41 3/6 Arithmetic Calculations

MIDIbox - http://www.midibox.org/dokuwiki/

SDCC Bugs/Workarounds

Some of these bugs have first been described in a german thread in the forum.

Array Access

Sometimes the transfer of an array between modules does not work properly, e.g. file 1:

unsigned char MIDIValues[8];

file 2:

MIOS_MIDI_TxBufferPut(MIDIValues[1]);

Instead, you need to do something like

unsigned char value = MIDIValues[1]; //explicit temp variable
MIOS_MIDI_TxBufferPut(value);

In most cases, adding parenthesis around your index variable has the same effect (see tip further
down)

MIOS_MIDI_TxBufferPut((MIDIValues[1]));

Large Arrays

Arrays with more than 256 bytes of elements will produce compile (in fact linker) errors:

unsigned char myArray[256]; // will work
unsigned char myArray[257]; // will not be linked!

unsigned char myArray[64][4]; // will work
unsigned char myArray[64][5]; // will not be linked!

unsigned int myArray[128]; // will work
unsigned int myArray[129]; // will not be linked!

This is due to the fact that the PIC's RAM has been segmented into 256-byte banks in the linker script,
and an array's contents may not span across more than one bank.

The linker script can be modified to work around the 256-byte limitation by creating larger banks, as
per the Linker Script and Application Code tips on the 4620 page.

http://www.midibox.org/forum/index.php?topic=7463.msg50464#msg50464
http://www.midibox.org/dokuwiki/doku.php?id=using_pic18f4620#linker_script
http://www.midibox.org/dokuwiki/doku.php?id=using_pic18f4620#application_code

Last
update:
2008/05/02
16:40

c_tips_and_tricks_for_pic_programming http://www.midibox.org/dokuwiki/doku.php?id=c_tips_and_tricks_for_pic_programming&rev=1207429405

http://www.midibox.org/dokuwiki/ Printed on 2024/09/21 12:41

Thanks to Thomas for testing some workarounds with multiple single-dimensional arrays. These
methods would be recommended if possible.

Bit Copy Operations

There is potential trouble with bit copy operations (See this posting). Instead of

 app_flags.SRAM_CARD_STATUS = PORTEbits.RE2;

you should use

 if(PORTEbits.RE2){
 app_flags.SRAM_CARD_STATUS = 1;
 }else{
 app_flags.SRAM_CARD_STATUS = 0;
 }

It is less elegant, but it works safely.

Parenthesis

Always use parenthesis around expressions like

myarray[a+b];

instead use

myarray[(a+b)];

Preprocessor #ifs

Avoid #ifdef and #if preprocessor-statements wrapped around declarations and function prototypes.
Even if the preprocessor's #if statement is true (eg defined as '1'), any access to it's vars and
functions from outside these wrapped statements produce a compile-warning:

#define TEST 1

#if TEST
 unsigned char testvar;

http://www.midibox.org/forum/index.php?topic=6814.msg43501#msg43501
http://www.midibox.org/forum/index.php?topic=7925.msg54675#msg54675

2024/09/21 12:41 5/6 Arithmetic Calculations

MIDIbox - http://www.midibox.org/dokuwiki/

#endif /* TEST */

void testfunction(void) {
 unsigned char c = testvar + 1; // access to testvar produces compiler
error!
}

Zero Compare

Avoid comparisons of unsigned char with 0, e.g.

unsigned char i;
 for (i = 0; i < 0; i+ü) {
 // body
 }

0 could be a constant that was defined using #define, e.g. the number of motorized faders. But you
have no motorized faders… The main problem consists in the fact that your code depends on what
else is done around the comparison or in the body. This provokes completely erratic behaviour.

Stack Size

TK says:
The stack boundaries are defined in the file header of mios_wrapper/mios_wrapper.asm:

; the upper boundary of the stacks are defined here
; customize the values for your needs
#ifndef STACK_HEAD
#define STACK_HEAD 0x37f
#endif

#ifndef STACK_IRQ_HEAD
#define STACK_IRQ_HEAD 0x33f
#endif

The default setup is 64 bytes for main tasks, 64 bytes for interrupt tasks. (stack pointer is counted
down, there is no collision control to save runtime)

Since a PIC18F4620 has enough memory, you could use two 256 bytes stacks located at the upper
RAM pages:

#define STACK_HEAD 0xeff
#define STACK_IRQ_HEAD 0xdff

http://www.midibox.org/forum/index.php?topic=7687.msg52402#msg52402

Last
update:
2008/05/02
16:40

c_tips_and_tricks_for_pic_programming http://www.midibox.org/dokuwiki/doku.php?id=c_tips_and_tricks_for_pic_programming&rev=1207429405

http://www.midibox.org/dokuwiki/ Printed on 2024/09/21 12:41

this should relax the situation.

Note that the appr. memory area (0xd00-0xeff) should be reserved in the projekt.lkr file Note that
stacks greater than 256 bytes will not work with SDCC at present.

From:
http://www.midibox.org/dokuwiki/ - MIDIbox

Permanent link:
http://www.midibox.org/dokuwiki/doku.php?id=c_tips_and_tricks_for_pic_programming&rev=1207429405

Last update: 2008/05/02 16:40

http://www.midibox.org/dokuwiki/
http://www.midibox.org/dokuwiki/doku.php?id=c_tips_and_tricks_for_pic_programming&rev=1207429405

	Arithmetic Calculations
	MIOS LIBSDCC Library

	C Functions
	C Optimizations
	C Variables
	SDCC Bugs/Workarounds
	Array Access
	Large Arrays
	Bit Copy Operations
	Parenthesis
	Preprocessor #ifs
	Zero Compare
	Stack Size

